Fusion Algorithm of Optical Images and Sar with Svt and Sparse Representation

نویسنده

  • Yin Zhouping
چکیده

Due to the different imaging mechanism of optical image and Synthetic Aperture Radar (SAR) image, they have the large different characteristics between the images, so fusing optical image and SAR image with image fusion technology could complement advantages and be able to better interpret the scenes information. A fusion algorithm of Synthetic Aperture Radar and optical image with fast sparse representation on low-frequency images was proposed. For the disadvantage of target information easily missing and the contrast low in fused image, and the fusion method with sparse representation could effectively retain target information of Synthetic Aperture Radar image, so the paper fuses low frequency images of Synthetic Aperture Radar and optical images using sparse representation. Moreover a new sparse coefficient fusion rules is proposed, and sparse decomposition process is improved to reduce the algorithm running time. Experimental results demonstrate the effectiveness of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation

Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...

متن کامل

Change Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images

The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...

متن کامل

Modeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)

Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of  the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and  land surface temperature (LST) calculation. However, their spatial resolu...

متن کامل

Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation

In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015